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Abstract This contribution aims to detect and measure more severe forms of con-
gestion than the ones that could hitherto be evaluated in axiomatic production theory.
To this end, we define a new S-disposal axiom, a kind of limited strong disposability.
This S-disposal assumption leads to a duality result between a general input direc-
tional distance function and the cost function that is weaker than the ones established
in the literature. Finally, we indicate how finite data sets can or cannot be rational-
ized by a minimal technology compatible with S-disposal, thereby generalizing the
nonparametric weak axiom of cost minimization test.
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1 Introduction

Congestion-intuitively defined as productionwith negativemarginal product- ismainly
mentioned as a theoretical curiosity in production theory. For instance,whendiscussing
average and marginal productivity the use of the qualification “irrational” to certain
of the so-called “stages of production” points to the low probability attributed to
congestion occurring in practice (e.g., Ferguson 1969, 66–79). What seems often
ignored is the theory-dependency of observations: to detect a phenomenon, one must
have a theoretical framework allowing to observe it. While detailed theoretical studies
defining several notions of congestion exist for the single output case (see Färe and
Svensson 1980), it is problematic that there are currently no axiomatically founded
production technologies to detect all possible congestion phenomena in a multi-output
context.

Prominent examples of congestion phenomena are probably traffic congestion and
agricultural output loss due to excessive use of fertilizers. Duranton and Turner (2011)
offer detailed evidence for a “fundamental law of road congestion” covering a broad
class of major US urban roads. Crop response models relating crop yield to nutrients
havewidely documented limited substitution possibilities, the existence of amaximum
yield (plateau) where marginal product of inputs is zero, and even a declining phase
of crop yields (see the survey in Paris 2008).1

While some forms of congestion appear in economics, this contribution provides an
axiomatic foundation to reconstruct technologies capable to reveal “hypercongestion”
(loosely described as a total loss of output when inputs are wasted in certain critical
combinations). Trivial examples of hypercongestion are the total destruction of a crop
due to flooding following a thunderstorm (excess water eventually combined with
other climatological circumstances), or traffic jams that temporarily destroy the whole
throughput on an arc in a network resulting in a zero traffic flow.

In applied production analysis, many functional forms cannot detect congestion at
all. E.g., the Cobb Douglas specification imposes positive marginal productivity along
the isoquant throughout input space. Furthermore, the common use of flexible func-
tional forms created a practice of imposing curvature globally, while monotonicity is
only imposed locally (tomaintain flexibility) or not at all. Barnett (2002) describes and
illustrates some of the available evidence indicating that imposing curvature solely can
actually induce violations of monotonicity. Without the satisfaction of both curvature
and monotonicity, the standard second-order conditions for optimizing behavior fail
and duality theory breaks down. Apart from these flexible functional forms, to our
knowledge there is only the ray or weakly disposable production function -a general-
ization of the variable elasticity of substitution function- that can identify congestion.
However, it has rarely been applied empirically.2

In nonparametric production theory multi-output ray and free disposable technolo-
gies have been employed to distinguish between technical inefficiency, understood
as production below the production frontier, and congestion, interpreted as a partic-

1 The latter phase is known as the toxic range of nutrients in soil science.
2 The few empirical studies using this specification focused mainly on disembodied technical change that
widens productive factor combinations rather than detecting congestion.
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ular severe form of technical inefficiency. Congestion occurs when either additional
inputs actually decrease outputs, or additional input quantities of some input dimension
necessitate the opportunity cost of some additional other input dimensions to main-
tain current output levels (see Färe and Grosskopf 1983). Thus, congestion implies an
opportunity cost in either lost output, or some losses in some other input dimensions
to maintain current output levels. The empirical analysis of technical efficiency along
with productivity has become quite popular recently (see, e.g., Henderson and Russell
2005 revisiting issues on international macroeconomic convergence). However, con-
gestion is often neglected in such studies, despite the fact that some studies indicate it
is the most important source of underperformance (e.g., Zhengfei and Oude Lansink
2003).

This contribution focuses upon a new axiom allowing to define more general multi-
output technologies capable of revealing the full range of congestion notions defined
in Färe and Svensson (1980), including output prohibitive congestion (a technical
term denoting hypercongestion). This also requires generalizing their mono-output
definitions of congestion for the multi-output context. Since it is important to be
able to model all forms of congestion using axiomatically founded technologies, this
contribution fills a void in the multi-output literature.

We also look at the implications of these technologies for duality theory. While
duality between cost and input distance functions is traditionally established imposing
strong disposability of inputs (e.g., Jacobsen 1970; Luenberger 1995), also a weaker
duality result between the cost function and the ray (or weakly) disposable input
distance function is available whereby some (but not all) prices can be negative (e.g.,
Shephard 1974). The main purpose of this contribution is to establish a more general
duality result based on a limited disposability assumption. This research is driven by
a triple motivation.

First, we consider the axiom of ray disposability of inputs intuitively unappealing,
since it amounts to assuming that inputs can be disposed off along a ray without
any limitation. We suggest to replace this ray disposability assumption with a weaker
S-disposal assumption that essentially makes the strong disposability assumption a
limited rather than a global property. This is partly inspired by Lau (1974, p. 182) who
suggested looking for a local version of strong disposability.3 In this view, since only
variables with values within a certain domain are relevant it suffices to maintain the
monotonicity property within a prescribed domain as dictated by sample information.
Therefore, the S-disposal assumption can model more general forms of congestion (as
defined by Färe and Svensson 1980) than the ray disposability assumption, including
the case of limits on the ray disposal of inputs.

Second, given the well-known reasons for nonconvexities in production (e.g., indi-
visibilities, increasing returns to scale, externalities,…), ideally one should be able
to model congestion for convex and nonconvex technologies alike. Reinforcing the
previous argument, it is obvious that ray disposability is of little use in nonconvex

3 Since the proposed S-disposal assumption limits the extent of strong disposability but does not comply
with any local notion in a mathematical sense, we opt for the adjective limited.
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68 W. Briec et al.

production models with indivisibilities.4 Furthermore, the impact of nonconvexity on
duality needs careful study.While already Jacobsen (1970) and Shephard (1974) point
out that the cost function is convex (nonconvex) in the outputs under the assumption
of a convex (nonconvex) technology, this result has been sharpened in Briec et al.
(2004). These authors have shown that cost functions estimated on convex or non-
convex technologies only coincide in the constant returns to scale and single output
case. Unfortunately, the issue of convexity in dual relations is widely ignored (see
Kuosmanen 2003 for an exception). This calls for the development of nonconvex
production technologies capable to model congestion, which is possible with the S-
disposal assumption.

Third, ray disposal models of joint production have gained some popularity to
explicitly model the trade-offs between good and bad outputs for the environment and
to obtain shadow prices for these bads (see, e.g., Coggins and Swinton 1996).5 Since
these shadow prices are a direct consequence of the underlying duality relations, the
enlargement of possible congestion notionsmay also have nonnegligible consequences
in environmental modeling. If supported by the data, stronger notions of congestion
may lead to higher shadow prices for bads than the ones hitherto obtained.6 This issue
is important given some pressing environmental challenges (e.g., global warming, fish
stock decline, etc.).

This paper then proposes to model congestion using a new S-disposal assumption
that allows defining multi-output technologies enveloping the data tighter than hith-
erto possible. The main reason for this methodological innovation is to reveal any
congestion in production processes compatible with a minimal set of assumptions, in
particular with or without convexity. This permits to model the full range of conges-
tion notions defined in Färe and Svensson (1980) for the multi-output case from first
principles.

The basic tool employed to characterize multi-output technologies and to detect
all forms of congestion is the directional distance function. Being dual to the profit
function (Luenberger 1995), it offers a general framework for economic analysis.
This function has proven a useful tool in micro-economic theory as well as in applied
production analysis (for example, it allows Chavas and Kim 2007 to shed new light
on economies of scope from a primal viewpoint). However, in this contribution we
need the directional distance function first and foremost because of the flexibility
of its directional vector allowing to “look” for congestion in a precise and directed
way. Given the theory-dependency of observations, the flexibility of this theoretical
framework allows detecting forms of congestion that could hitherto not be observed

4 A criticism on convexity in production theory (and economics in general) based on the importance of
indivisibilities is developed in Scarf (1986). See also Hackman (2008).
5 Murty et al. (2012) argue against this rather widespread use of ray disposability to model the relation
between good and bad outputs. These authors explicitly combine a standard technology with good inputs
and outputs with a residual generating technology which does not satisfy standard free disposal axioms.
We ignore this particular application area focusing on the relation between good and bad outputs and focus
on modeling congestion between good inputs and outputs instead.
6 Since the acceptance/rejection of convexitymay constitute a dividing line between economics and ecology
(e.g., Dasgupta and Mähler 2003), it remains to be seen how trade-offs between good and bad outputs can
be modeled without convexity.
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Congestion in production correspondences 69

using axiomatically founded technologies.AlreadyZhengfei andOudeLansink (2003)
convincingly illustrate how input congestion due to ray disposal of inputs is easier
detected using some sub-vector distance function instead of a traditional one.

This paper unfolds as follows. Section 2 contains preliminary material on tech-
nologies, their subsets and underlying axioms. It also presents the new disposability
axioms on technologies. Looking from a dual viewpoint, we focus on the fact that neg-
ative relative prices are linked to the congestion notion. Section 3 develops the notion
of input directional distance functions on congested technologies and establishes the
main duality result between the input directional distance function and a cost function
allowing for negative prices. Furthermore, we show how to detect a lack of S-disposal
and contrast this to the more traditional ray-disposable technologies and the different
notions of congestion these technologies can reveal. We also outline a measure of
congestion based upon the directional distance function. Thereafter, we indicate how
observed finite data sets can or cannot be rationalized by a minimal technology com-
patible with S-disposal. The latter nonparametric test for the S-disposal hypothesis
focuses on the cost function solely, thereby generalizing a well-known nonparametric
test result in Varian (1984) (i.e., the Weak Axiom of Cost Minimization, WACM).
It is motivated by the conviction that empirical production analysis must build upon
minimal axioms.7 This is in line with the recent upsurge in nonparametric models of
consumption (e.g., Blundell 2005), characteristics models (for instance, Blow et al.
2008), etc. A final section concludes, discusses limitations, and offers directions for
future research. In an effort not to overburden this already lengthy paper, an empirical
illustration is made available in Appendix 1.

2 Technology: assumptions and definitions

2.1 Technology based upon traditional assumptions

We start by defining the notation used in this article. Let R
m+ be the nonnegative

Euclidean m-dimensional orthant; for x, u ∈ R
m+ we denote x ≤ u ⇐⇒ xi ≤ ui

∀i ∈ [m], where [m] denotes the set {1, . . . , m}.
A production technology transforming inputs x = (x1, . . . , xm) into outputs y =

(y1, . . . , yn) ∈ R
n+ can be characterized by the input correspondence L : R

n+ −→ 2R
m+

where L(y) is the set of all input vectors that yield at least y:

L(y) = {x : x can produce y}, (2.1)

and 2R
m+ the set of all subsets of R

m+.
Throughout this paper, we assume the input correspondence satisfies the following

regularity properties (see Hackman 2008; Jacobsen 1970; McFadden 1978):

L1: ∀y ≥ 0 with y 	= 0: 0 /∈ L(y) and L(0) = R
m+.

7 Fuss et al. (1978, p. 223) state: “Given the qualitative, nonparametric nature of the fundamental axioms,
this suggests [ ] that themore relevant tests will be nonparametric, rather than based on parametric functional
forms, even very general ones.”
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L2: ∀x ∈ R
m+:

⋂
y∈R

n+ L(y) ∩ (x − R
m+) = ∅.

L3: L(y) is closed ∀y ∈ R
n+.

In addition to the axioms of no free lunch and the possibility of inaction (L1), as
well as the boundedness (L2) and closedness (L3) of the inputs set, there are three
other assumptions that we sometimes invoke on the input correspondence:
L4: L(y) is a convex set ∀y ∈ R

n+.
L5: If x ∈ L(y), then λx ∈ L(y), ∀λ ≥ 1.
L6: Let u ∈ R

m+. If there exists a x ∈ L(y) with u ≥ x , then u ∈ L(y).8

Assumption L4 postulates convexity of the input correspondence. This is useful to
provide a dual interpretation through the cost function and in empirical applications
of nonparametric technologies (e.g., Varian 1984). Assumption L5 postulates ray
(or weak) disposability of the inputs, while axiom L6 imposes the more traditional
assumption of strong (or free) disposal of inputs. A convex, ray disposable technol-
ogy satisfying L5 but failing L6 is congested in the sense of Färe and Grosskopf
(1983).9 Note that L4 is not indispensable, since there exist nonparametric noncon-
vex technologies solely based upon the free disposal assumption L6 (e.g., Briec et al.
2004).10

To measure efficiency, it is convenient to distinguish between certain subsets of the
input set L(y). In particular, two subsets denoting production units on the boundary
prove useful. For all y ∈ R

n+, the efficient subset is defined by:

E(y) = {x ∈ L(y) : u ≤ x and u 	= x ⇒ u /∈ L(y)}. (2.2)

The weak efficient subset is written as:

W (y) = {x ∈ L(y) : u < x ⇒ u /∈ L(y)}. (2.3)

2.2 The new S-disposal assumption

2.2.1 Congestion, S-disposability assumption and S-congestion

We start with a more precise definition of congestion. Transposing Färe and Svensson
(1980) from the single to the multiple output case, Färe and Grosskopf (1983: 264)
define monotone output-limitational (M O L) congestion as follows:

Definition 2.1 For all y ∈ R
n+, we say that the input set L(y) is MOL-congested if

for some x ∈ L(y), ∃u ≥ x such that u /∈ L(y).

This means that a technology is M O L-congested if it fails the free disposal
assumption. For instance, a ray disposable technology is M O L-congested (Färe and
Grosskopf 1983).

8 Using negation, one can easily see that this formulation of free disposability is logically equivalent with
∀x ∈ L(y) : u ≥ x ⇒ u ∈ L(y), the latter being somewhat more common.
9 Kuosmanen (2005) shows that this traditional specification fails convexity, but that a revised specification
is convex.
10 See also First et al. (1993) and Hackman (2008) for alternative nonconvex technologies.
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We define the following notation used throughout this contribution. Let I ⊂ [m],
then

x ≤I u ⇐⇒
{

xi ≥ ui if i ∈ I
xi ≤ ui else

(2.4)

Moreover:

x < I u ⇐⇒
{

xi > ui if i ∈ I
xi < ui else

(2.5)

Of course, if −x ≤ I −u we denote x ≥I u.
We can now define a new disposability assumption for the inputs. Denote by 2[m]

the set of all subsets of [m]. Remark that ∅ ∈ 2[m] by definition.

Definition 2.2 Let S ⊂ 2[m]. Let u ∈ R
m+ and y ∈ R

n+. The input correspondence
L(y) satisfies the S-disposal assumption if the following holds true: if for every I ∈ S
there exists a xI ∈ L(y) with u ≥I xI , then u ∈ L(y).

Notice that if S = {∅}, then we retrieve the standard vector inequality and the S-
disposal assumption reduces to the standard free disposability assumption which can
be seen easily by comparison with axiom L6. This S-disposal assumption is a kind
of weakening of the usual strong or free disposal assumption. A technology which
fails the strong disposal assumption may satisfy S-disposal assumption for a given
S. Inversely, an S-disposable technology may violate the standard free disposability
assumption depending on S.

Definition 2.3 Let S ⊂ 2[m]. For all y ∈ R
n+, the input correspondence L(y) satisfies

a minimal S-disposability assumption if:

(a) L(y) satisfies the S-disposal assumption, and
(b) � S′ ⊂ S with S′ 	= S such that L(y) satisfies the S′-disposal assumption.

Basically, the free disposal assumption is limited by combining it with a particular
partial reversion of free disposal. Another way of interpreting this new definition is that
we reformulate the traditional strong input disposability assumption as a “local” (in
the sense of limited) rather than a global property (following the concerns expressed
by Lau 1974).

Under weak disposability assumptions, any given input vector can be expanded
along a ray through the origin. Consequently, there is no upper bound towasting inputs,
which seems a rather implausible assumption. By contrast, the more input dimensions
are subjected to these particular, partial reversions of free disposability defined by
the S-disposal assumption, the more the traditional free disposability assumption gets
limited and thus weakened. Indeed, Definitions 2.2 and 2.3 imply that the larger the
collection S is themore difficult one can dispose off inputs. In general, these definitions
can account for cases where there is a simultaneous lack of free disposability in
all dimensions, but it is also possible to define this lack independently in several
dimensions. In conclusion, the S-disposal assumption allows accounting for upper
bounds to the wasting of inputs that may well exist in certain data configurations.

Let us introduce the following convex cone:

K I = {
x ∈ R

m : x ≥I 0
}
. (2.6)
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x

x{1}

u

L(y)

K{1}

S = { , {1}}
x1

x2

0

Fig. 1 The case S = {∅, {1}} on an input set

By definition, the nonnegative Euclidean orthant can be expressed as follows:

K∅ = R
m+. (2.7)

Definitions 2.2 and 2.3 can be illustrated in Figs. 1, 2 and 3. In Fig. 1, the input
correspondence satisfies the minimal S-disposal assumption with S = {∅, {1}}. For
an arbitrary u, if there is some x∅ that classically dominates u and some x{1} that “{1}-
dominates” u, then u ∈ L(y). For a given configuration of observations, this serves to
construct an input set where wasting the first input implies an additional opportunity
cost in terms of the second input dimension. However, the reverse dependency between
input dimensions does not hold.

In Fig. 2, there is lack of disposability in x1 and x2, but not in both dimensions simul-
taneously. Thus in this case, the input correspondence satisfiesminimal S-disposability
with S = {∅, {1}, {2}}. By contrast, in Fig. 3 we show a potential example of the case
S = {∅, {1}, {2}, {1, 2}}, which displays a reverse dependency between all input
dimensions. This leads to an input set where the law of diminishing returns prevails
in any input.11

Example 2.1 We consider the example proposed by (Färe and Jansson 1976, p. 410).
Suppose that m = 2 and n = 1 and let the technology be defined by:

T = {
(x1, x2, y) ∈ R

3+ : y ≤ φ(x1, x2)
}
,

11 The figure also reminds us about the possibility that there may be one or several bliss points where
production ismaximal. However, to clearly discern such a case onewould need an approach also considering
the output dimensions rather than just focusing on the input dimensions alone.
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x

x{1}

x{2}

u

L(y)

K{1}

K{2}

S = { , {1}, {2}}
x1

x2

0

Fig. 2 The case S = {∅, {1}, {2}} on an input set

x

x{1,2}

x{2}

x{1}
u

L(y)

K{1}

K{2}K{1,2}

S = { , {1}, {2}, {1, 2}}
x1

x2

0

Fig. 3 The case S = {∅, {1}, {2}, {1, 2}} on an input set

where

φ(x1, x2) =

⎧
⎪⎨

⎪⎩

α[( 1 − δ)(x1 − β2x2)−q

+δ(x2 − β1x1)−q ]−1/q if min{x1 − β2x2, x2 − β1x1} ≥ 0,

0 otherwise,
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with the parameters restricted as α > 0, δ ∈]0, 1[, q ∈ [−1,+∞[, β1, β2 ∈ [0,+∞[,
β1β2 < 1. Suppose that y > 0. Then, by definition:

L(y) = {
(x1, x2) ∈ R

2+ : φ(x1, x2) ≥ y
}
.

Consider the following cases:

(i) If α = 1, δ = 0.5, β1 = β2 = 0.2, q = 0.2, then for all y > 0 the input set
satisfies the S-disposal assumption with S = {

∅, {1}, {2}} (see Färe and Jansson
1976, Figure 1 on p. 410). However, it fails the S-disposal assumption if either
{1} or {2} does not belong to S.

(ii) If α = 1, δ = 0.5, β1 = 0.2 but β2 = 0, q = 0.2, then for all y > 0 the input
set satisfies the S-disposal assumption with S = {

∅, {1}} (see Färe and Jansson
1976, Figure 2 on p. 411). However, it fails the free disposal assumption. This
input set is freely disposable in the second input dimension, but it is congested
in the first input dimension. Hence, the technology satisfies the S-disposability
assumption with S = {∅, {1}}.

Example 2.2 Suppose that m = 2 and n = 1 and let the technology be defined by:

T = {
(x1, x2, y) ∈ R

3+ : y ≤ αx1x2(x2
2 + β2)−1},

whereα andβ are two positive parameters. Suppose that y > 0. Then, by definition:

L(y) = {
(x1, x2) ∈ R

2+ : αx1x2(x2
2 + β2)−1 ≥ y

}

= {
(x1, x2) ∈ R

2+ : x1 ≥ yα−1x2
−1(x2

2 + β2)
}
.

This input set is freely disposable in the first input dimension, but it is congested
in the second input dimension. Hence, the technology satisfies the S-disposability
assumption with S = {∅, {2}}.

The previous examples might suggest that S-disposability can always be imposed
by carefully selecting the set S. Unfortunately, this is not the case as can be seen, e.g.,
when considering an input set that is not path connected. However, if the input set is
convex, then S-disposability with S = 2[m] is always satisfied as suggested by Figs.
1, 2 and 3.

To study this new disposal assumption from a dual standpoint, we introduce the
cost function C : R

m × R
n+ −→ R ∪ {−∞,+∞} defined by:

C(p, y) =
{
inf

x
{p.x : x ∈ L(y)} if L(y) 	= ∅,

+∞ otherwise.

Notice that this definition allows to take into account negative prices which are
specifically linked to congested technologies.

The following proposition studies the properties of the S-disposal assumption.
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x1

x2

0

Fig. 4 Convex and nonconvex input correspondence

Proposition 2.1 Let L be an input correspondence satisfying L1–L3. For all y ∈ R
n+,

if L(y) is nonempty then we have the following properties:

(a) Let S and S′ be two collections of subsets of [m] such that S ⊂ S′. If L(y) satisfies
the S-disposal assumption, then it also satisfies the S′-disposal assumption.

(b) L(y) satisfies the S-disposal assumption if and only if:

L(y) =
⋂

I∈S

(L(y) + K I ) .

Note that the proofs of all propositions are in Appendix 2. Part (a) states that if an
input set satisfies S-disposal of a certain dimensionality, then the same technology is
compatible with S′-disposal for every set S′ containing the initial collection S. Part
(b) characterizes an S-disposal input correspondence in terms of an intersection of
subsets constructed by means of the cones (2.6).

Although this result may seem rather trivial, it actually turns out to be very useful as
an alternative for obtaining the input correspondence L(y). Indeed, since no assump-
tions are made concerning convexity, this result also holds true under nonconvexity.
To give just one example of its application, result (b) can be used for defining and
reconstructing a nonconvex hull technology in an indirect way. Figure 4 shows the
nonconvex hull (solid line) and the convex hull (dashed line) input correspondence of
a set of observations with two inputs.

The following proposition extends the results of Proposition 2.1 to a convex input
correspondence. In particular, we provide a dual characterization of the S-disposability
notion. But, before doing so, we first define the notion of J -congested price.
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Definition 2.4 Suppose that the input set satisfies the S-disposal assumption. For all
J ∈ S, we say that an input price p is J -congested if

p ∈ K J ∩
⎛

⎝R
m\

⋃

I∈S\{J }
K I

⎞

⎠ .

Example 2.3 To illustrate this definition, suppose that m = 2 and S = {∅, {1}}. A
price vector is then {1}-congested if

p ∈ K{1} ∩
(
R
2\K∅

)
= (R− × R+) ∩

(
R
2\R

2+
)
.

Equivalently, p1 < 0 and p2 ≥ 0.

In general, if S = {∅, J }, a price is J -congested if p j < 0 for all j ∈ J and pi ≥ 0
for all i /∈ J .

Proposition 2.2 Let L be an input correspondence satisfying L1–L3. Moreover,
assume that L4 holds. For all y ∈ R

n+, if L(y) is nonempty then we have the fol-
lowing properties:

(a) L(y) satisfies the S-disposal assumption if and only if

L(y) =
{

x ∈ R
m : p.x ≥ C(p, y), p ∈

⋃

I∈S

K I

}

.

(b) There exists a collection S that contains ∅ such that L(y) satisfies the minimal
S-disposal assumption.

(c) Assume that L(y) satisfies the S-disposal assumption. The S-disposability of L(y)

is minimal, if and only if for all J ∈ S there exists some J-congested price p such
that C(p, y) > −∞.

Intuitively stated, a convex input set satisfying S-disposal can be enveloped by a
cost function for proper prices. More precisely, if one defines a minimal S-disposal
input set, then a support function can be defined with negative prices corresponding
to the subset of all congesting input dimensions. This result constitutes the basis for
the duality result developed in Sect. 3 below.

We are now ready to define a new, more general congestion notion:

Definition 2.5 Let L be an input correspondence and let S be a collection of subsets
in [m] that contains ∅. Let y ∈ R

n+. L(y) is said to be S-congested if it is nonempty
and fails the S-disposal assumption.

Definition 2.5 provides a strict definition of S-congestion by assuming that there
does not exist a stronger S-disposal assumption holding over the input correspondence.
In particular, this means that a S-congested technology is such that:

L(y) 	= L∅(y) = L(y) + R
m+. (2.8)
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Congestion in production correspondences 77

This can be viewed as a transposition of the earlier definition of M O L-congestion in
terms of S-disposability. This facilitates comparisons among concepts.

The next result establishes a characterization of S-congested technologies.

Proposition 2.3 Let L be an input correspondence that satisfies L1-L3. Let S be a
collection of subsets in [m] that contains ∅. For all y ∈ R

n+, if L(y) is nonempty then
we have the following properties:

(a) Assume that L(y) is S-congested. For all S′ ⊂ S with S′ 	= ∅, L(y) is S′-
congested.

(b) Assume that L(y) satisfies the minimal S-disposability assumption, then for all
S′ ⊂ S with S′ 	= S, L(y) is S′-congested.

(c) Assume that L4 holds. L(y) is S-congested if and only if there exists J /∈ S, and
some J-congested price vector pJ such that C(pJ , y) > −∞.

Parts (a) and (b) of Proposition 2.3 state that if an input set is S-congested in terms
of a certain dimensionality, then the same technology is S′-congested for every proper
subset S′ of the initial collection S.

2.2.2 Boundaries and bounds on S-congested technologies

It remains an open question how to detect congestion from the structure of the input
correspondence. To answer this question, it is useful to introduce the concept of a
congestion frontier. Therefore, the following definition identifies a subset that is not
efficient, but that is a part of the boundary of a congested input correspondence.

Definition 2.6 Let L be an input correspondence and let I ⊂ [m]. For all y ∈ R
n+,

we call the I -congested boundary the subset:

EI (y) = {x ∈ L(y) : u ≤I x and u 	= x ⇒ u /∈ L(y)}.

We call the I -weakly congested boundary the subset:

WI (y) = {x ∈ L(y) : u < I x ⇒ u /∈ L(y)}.

Let S be a collection of subsets of [m]. We call the S-congested boundary and weakly
S-congested boundary, respectively,

ES(y) =
⋃

I∈S

EI (y) and WS(y) =
⋃

I∈S

WI (y).

Example 2.4 In Example 2.2, consider the curve defined by equation x1 =
yα−1x−1

2 (x22 + β2). The minimum point of the curve is achieved at x2 = β. With
S = {∅, {2}}, we have E{2}(y) = W{2}(y) = {(yα−1x−1

2 (x22 +β2), x2) : x2 ≥ β} and
E∅(y) = W∅(y) = {(yα−1x−1

2 (x22 + β2), x2) : 0 ≤ x2 ≤ β}.
Proposition 2.4 Let L be an input correspondence satisfying L1–L3 and S be a
collection of subsets of [m] that contains ∅.
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(a) The subset WS(y) is closed.12

(b) The input set L(y) is S-congested if and only if there exists some J /∈ S such that
the subset E J (y) is nonempty.

(c) The input set L(y) satisfies a minimal S-disposal assumption if and only if for
every J ∈ S the subset E J (y) is nonempty.

(d) Assume that L4 holds. The input set L(y) is S-congested if and only if there
exists some J /∈ S, xJ ∈ WJ (y) and some J-congested price vector pJ such that
C(pJ , y) > −∞ and pJ .xJ = C(pJ , y).

In Propositions 2.2, 2.3 and 2.4 we have developed some connections between
the S-congestion concept and the cost function. Obviously, when the free dispos-
ability assumption holds, then C(p, y) > −∞ ⇐⇒ p ≥ 0. However, the

S-disposal assumption condition pJ ∈ K J ∩
(
R

m\⋃
I∈S\{J } K I

)
does not warrant

that C(pJ , y) > −∞. In fact, to obtain a similar property on the cost function,
we introduce the S-bounded concepts. When the usual free disposability assumption
holds, since L(y) ⊂ R

m+, then the input correspondence is ∅-bounded.

Definition 2.7 Let L be an input correspondence and S be a collection of subsets of
[m] that contains ∅. For all y ∈ R

n+, the input set L(y) is S-bounded if for all I ∈ S
there exists some x̄ I ≤I x,∀x ∈ R

m+.

Obviously, an input set that satisfies the usual free disposal assumption is ∅-
bounded, with x̄∅ = 0. We show in Proposition 2.5 below that the above Definition
2.6 is of particular interest in the context of defining empirical specifications (e.g.,
nonparametric) of technologies.

Proposition 2.5 Let L an input correspondence that satisfies L1-L3. Let S a collection
of subsets in [m] that contains ∅. For all y ∈ R

n+, if L(y) is nonempty then we have
the following properties:

(a) If L(y) is S-bounded and
⋃

I∈S I = [m], then L(y) is compact.
(b) If L(y) is S-bounded, then for every S′ ⊂ S, with S′ 	= S, it is S′-congested.
(c) Assume that L4 holds, if L(y) is S-bounded, then there exists some J ∈ S and a

J-congested price pJ such that C(pJ , y) > −∞.

Part (b) of Proposition 2.5 states that if an input set is S-bounded in terms of a
certain dimensionality, then the same technology is S′-congested for every proper
subset S′ of the initial collection S. This explains why congestion is so easily ignored.
Assuming congestion is present in some dimensions of the true technology, then if one
does not specify a general enough model one may miss detecting congestion in some
of these dimensions. Thus, it is key to start by specifying a general model capturing
any congestion present in all input dimensions. If no congestion is found in all input
dimensions, then one can look for subsets of inputs suffering from congestion. But,
if one starts with a specific model for a subset of inputs, then one may miss detecting
congestion in other or all inputs. In the limit, if one is unwilling to impose a model

12 As pointed out by an anonymous referee, in general the efficient subset is not closed (see for instance
Arrow et al. 1953).
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capable to capture congestion, then no congestion can appear at all. By analogy, one
could also say that if one looks for O P-congestion one may end up finding M O L-
congestion. But, when looking for M O L-congestion only, one is never able to find
any O P-congestion.

The following example shows how to compute a congested cost function.

Example 2.5 Consider the minimization problem

min
x

{
p1x1 + p2x2 : φ(x1, xy) ≥ y ≥ 0

}
,

defined from the technology introduced in Example 2.1 which is equivalent to

min
x

{
p1x1 + p2x2 : α[(1 − δ)(x1 − β2x2)

−q + δ(x2 − β1x1)
−q ]−1/q ≥ y,

min{x1 − β2x2, x2 − β1x1} ≥ 0
}
.

Denote u =
(

1 −β2
−β1 1

)

x . Then x = 1
1−β1β2

(
1 β2
β1 1

)

u. Consequently, the mini-

mization problem can be rewritten as

min
u

{ 1

1 − β1β2
[(p1 + β1 p2)u1 + (p2 + β2 p1)u2] :

α[(1 − δ)u−q
1 + δu−q

2 ]−1/q ≥ y, u1, u2 ≥ 0
}
.

If p1 + β1 p2 > 0 and p2 + β2 p1 > 0, we obtain from the first order Karush–Kuhn–
Tucker conditions the optimal solution

ū1 = y(1 − δ)s(p2 + β2 p1)s

α[δs(p1 + β1 p2)s−1 + (1 − δ)s(p2 + β2 p1)s−1]− 1
q

and

ū2 = yδs(p1 + β1 p2)s

α[δs(p1 + β1 p2)s−1 + (1 − δ)s(p2 + β2 p1)s−1]− 1
q

,

with s = 1/(1+q). Using the relation between x and u yields the solution x̄ of the cost
minimization problem. Notice that the conditions p1 + β1 p2 > 0 and p2 + β2 p1 > 0
allow computing the cost function for possible nonpositive price vectors.

Example 2.6 Consider Examples 2.2 and 2.4 and assume that p1 > 0 and p2 < 0.
From the results above

C(p, y) = inf
x

{p.x : x ∈ W{2}(y)}.
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Since p2 < 0, the constraint x2 ≥ β is not binding. Thus

C(p, y) = inf
x

{p1yα−1x−1
2

(
x2

2 + β2
)

+ p2x2}.

We obtain the first order condition:

2p1yα−1x2
2 + 2p2x2

2 − p1yα−1
(

x2
2 + β2

)
− p2x2

2 = 0

leading to the optimal solution

x̄2 =
√

p1yα−1β2

p1yα−1 + p2
and x̄1 = p1yα−1 x̄−1

2 (x̄22 + β2),

which yields the cost function.

3 Duality between technology and cost function based on
S-disposability: a new result

Luenberger (1992) introduced the so-called benefit function in consumer theory.
Chambers et al. (1996) have transposed this measure in the context of production
theory by defining the input directional distance function. This input directional dis-
tance function characterizes technology and provides a useful tool in efficiency and
productivitymeasurement because it generalizes the traditional input distance function
and thus also the radial efficiency measure. This input directional distance function
is a special case of the directional distance function that itself is dual to the profit
function (see Luenberger 1995). Therefore, the use of directional distance functions
offers the most general framework.

3.1 Directional distance function and cost function on S-congested technologies:
a duality result

The input directional distance function DL : R
m+n+ × R

m+ −→ R ∪ {−∞,+∞} is
defined by:

DL(x, y; g) = sup{δ : x − δg ∈ L(y)}. (3.1)

Note that g ∈ K∅ = R
m+ in the definition above which holds for a technology that

satisfies the strong disposability assumption.
Following the traditional duality result in Jacobsen (1970) or McFadden (1978)

between cost function and input distance function, Luenberger (1992) and Chambers
et al. (1996) have more recently developed formulations in terms of cost function and
input directional distance function. Thus, one can state a duality result making a link
between the input directional distance function and the cost function on an input set
L(y) satisfying the strong disposability assumption.
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Proposition 3.1 Let L be an input correspondence satisfying L1-L3 and L6. Assume
that g 	= 0 and let (x, y) ∈ R

m+n+ such that DL(x, y; g) > −∞. We have the following
properties:

(a) If L4 (convexity) holds:

DL(x, y; g) = inf
p

{p.x − C(p, y) : p.g = 1, p ≥ 0} . (3.2)

(b) Let p be a nonnegative input price vector. Assuming that L4 holds, we have:

C(p, y) = inf
x

{p.x − p.gDL(x, y; g)} . (3.3)

Apart from this traditional duality relationship, a weaker duality result between the
cost function and the ray (or weakly) disposable input distance function is available
in the literature (e.g., Shephard 1974) whereby some (but not all) prices are allowed
to be negative:13

Proposition 3.2 Let L be an input correspondence satisfying L1-L3 and L5. Assume
that g 	= 0 and let (x, y) ∈ R

m+n+ such that DL(x, y; g) > −∞. We have the following
properties:

(a) If L4 (convexity) holds, then:

DL(x, y; g) = inf
p

{p.x − C(p, y) : p.g = 1}. (3.4)

(b) Let p be an input price vector having some negative components. Assuming that
L4 holds, we have:

C(p, y) = inf
x

{p.x − p.gDL(x, y; g)}. (3.5)

This is an immediate consequence from the fact that a convex set is the intersection
of its supporting hyperplanes.

Now, we extend the directional distance function and its properties to account for
input sets satisfying the S-disposal assumption combined with a possible nonpositive
direction vector g.

Proposition 3.3 Let L be an input correspondence satisfying L1-L3. Assume more-
over that L(y) satisfies the S-disposal assumption. Assume that g 	= 0 and let
(x, y) ∈ R

m+m+ such that DL(x, y; g) > −∞. We have the following properties:

(a) If L4 (convexity) holds, then:

DL(x, y; g) = inf
p

{

p.x − C(p, y) : p.g = 1, p ∈
⋃

I∈S

K I

}

. (3.6)

13 Also McFadden (1978, 60) anticipates the use of negative prices and maintains that duality results can
be preserved under these circumstances.

123



82 W. Briec et al.

(b) Let p ∈ K I with I ∈ S be an input price vector having some negative components.
Assume that L4 holds, we have:

C(p, y) = inf
x

{p.x − p.gDL(x, y; g) : x ∈ L(y)} . (3.7)

Property (a) extends the results by Luenberger (1992) and Chambers et al. (1996) in
the context of an input correspondence that may fail both the strong and the weak dis-
posability assumptions. The converse results expressing the cost function with respect
to the directional distance function is stated in (b). This duality result considerably
weakens current duality results imposing strong disposability (Proposition 3.1) and
weak disposability (Proposition 3.2), which allow some (but not all) prices to be neg-
ative. Otherwise stated, this proposition shows that S-disposal of inputs is a necessary
and sufficient condition for the input directional distance function to characterize tech-
nology. This substantiallyweakens the existing result on the importance of ray disposal
in the inputs for the traditional input distance function to characterize technology.

This new duality result is illustrated in Fig. 5 for the case S = {∅, {1}}. Since the
first input is clearly congested, it receives a negative price and the cost function ends
up having a positive rather than a negative slope.

Notice that when modeling the trade-offs between good and bad outputs for the
environment, the S-disposal assumption may well lead to more negative prices for the
bads than the traditional ray disposal assumption currently employed in this literature.
Thismay imply that current estimates for the economic harmof bads are systematically
underestimated.

In principle it is possible to relax the convexity assumption. Under nonconvexity,
the duality result in Proposition 3.3 would only hold locally (similar to the local
duality result in, e.g., Briec et al. 2004). However, under nonconvexity Proposition 3.2
would fail to hold, since ray disposal seems to be of little use without convexity (see
Introduction). Note again that while the cost function is nondecreasing in the outputs,
cost functions estimated on convex (nonconvex) technologies are furthermore convex
(nonconvex) in the outputs (see Jacobsen 1970; Shephard 1974).

3.2 S-congested and ray-disposability congested technologies: a comparison

It should be clear by now thatwhen the input set satisfies free disposal, then it also satis-
fies S-disposal assumptions. But, the converse is not necessarily true. The same applies
to weak disposal assumptions: an input set satisfying weak disposability assumptions
also satisfies S-disposal assumptions, but the converse need not be true.

An input set that is weakly disposable can be employed to detect M O L-congestion
whereby increasing some inputs decreases outputs (or decreasing inputs increases out-
puts). An input set satisfying S-disposal assumptions can also detect hypercongestion.
This subsection clarifies the link between both approaches to congestion modeling.

Proposition 2.2 has a direct implication for the ray disposability notion.When tech-
nology is convex and M O L-congested (seeFäre andGrosskopf 1983), then there exists
a collection S such that it satisfies a minimal S-disposal assumption and one obtains
negative marginal rates of substitution corresponding to the lack of free disposability.

123



Congestion in production correspondences 83

u

L(y)

K{1}

p{1}.x = C(p{1}, y)

p{1}.x = p{1}.u

S = { , {1}}
x1

x2

0

Fig. 5 Directional distance function and duality with I = {1} and S = {∅, {1}}

Proposition 3.4 Let L be an input correspondence satisfying L1–L4. For all y ∈ R
n+,

if L(y) satisfies L5, but not L6, then we have the following properties:

(a) There exists S that contains ∅ such that L(y) satisfies a minimal S-disposal
assumption.

(b) There exists S such that for every J ∈ S, there exists some input J -congested price
vector p such that C(p, y) > −∞.

Proposition 3.4 characterizes ray disposability in the inputs as a special case of
minimal S-disposability. Part (a) states that any weakly disposable technology can be
re-interpreted as an S-disposable technology, but not the converse. Part (b) claims that a
weakly disposable technology can always be characterized via the support function of
its input set. An input set is then ray disposable if there exists a price vector containing
some negative prices such that the cost function is bounded.

This results is illustrated in Fig. 6. A weakly disposable input set with backward
bending rays can also be reconstructed as an input set with S-disposal in both inputs
(just as the case S = {∅, {1}, {2}} depicted in Fig. 2).

The following corollary establishes a link between S-congestion and the notion of
M O L-congestion as defined by Färe and Grosskopf (1983).

Proposition 3.5 Let L be an input correspondence satisfying L1-L4. For all y ∈ R
n+,

if L(y) satisfies L5, but not L6, then we have the following properties:

(a) There exists S that contains ∅ such that L(y) is S-congested.
(b) There exists a collection S, J /∈ S and some J-congested price vector p such that

C(p, y) > −∞.

Thus, for any input set satisfying a certain ray disposal hypothesis, one can always
find a corresponding S-congestion assumption that is compatible with the data. Fur-
thermore, the former input set can be reconstructed via a corresponding cost function,
just as it is the case for S-congested technologies.
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x∅

x{1}

x{2}

u

L(y)

K{1}

K{2}

S = {∅, {1}, {2}}
x1

x2

0

Fig. 6 Weakly disposable technologies and S-congestion

In the following we show that S-congestion can be viewed as a more flexible
concept because it can model several forms of congestion as defined in Färe and
Svensson (1980). Indeed, in addition to M O L-congestion it also allows to model
output prohibitive (O P) congestion and all of its variations in general multi-output
technologies. Let J be a finite subset of [n]. In the following we denote R

J+ = {y ∈
R

n+ : y j = 0,∀ j /∈ J }. By definition, we have R
J+ = R

n+ ∩ K J , where K J is the
convex cone of R

n constructed following Eq. (2.6).

Definition 3.1 For all y ∈ R
n+, an input set L(y) is O P-congested for the index set

J if for all y ∈ R
J+\{0} the input set L(y) is J -bounded.

This definition generalizes O P-congestion as defined for single-output technolo-
gies in Färe and Svensson (1980) to the multiple output case.

The next result establishes that a ray disposable technology cannot satisfy O P-
congestion.

Proposition 3.6 Let L be an input correspondence satisfying L1-L4. For all y ∈ R
n+,

if L(y) satisfies L5, then the technology does not satisfy O P-congestion.

By contrast, a S-congested technology may exhibit O P-congestion. This is estab-
lished in the next example.

Example 3.1 Suppose that m = n = 1 and that there exists a continuous function
φ : R+ ⇒ R+ such that T = {(x, y) ∈ R

2+ : y ≤ φ(x)}. Suppose moreover that: (a)
there exists a unique maximum x∗ of φ, (b) limx→+∞ φ(x) = 0, and (c) φ(0) = 0.
From (a), (b) and (c), this technology satisfies L1-L4 and is clearly O P-congested.
Suppose that x, x ′ ∈ L(y) and that u ≥ x and u ≤ x ′. Since there is a uniquemaximum
and φ is continuous, we have φ(u) ≥ y. Consequently, u ∈ L(y) and we conclude
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that L(y) satisfies a {∅, {1}}-disposal assumption. Moreover, it fails the free disposal
assumption (∅-disposal). Thus, L(y) is ∅-congested.

One could easily extend this example to the multiple output case.

3.3 Directional distance function and congestion measurement

We are now interested in making the link between special cases of the input directional
distance function, to be introduced below and the congestion concept. To study this
relationship from the dual viewpoint we introduce the adjusted price correspondence
p : R

m+n+ × R
m+ −→ 2R

m
due to Luenberger (1995) and defined by:

p(x, y; g) = argmin

{

p.x − C(p, y) : p.g = 1, p ∈
⋃

I∈S

K I

}

. (3.8)

Notice that if the minimum is not achieved, then p(x, y; g) = ∅. For simplicity,
we introduce the following notation:

L∅(y) = L(y) + K∅ = L(y) + R
m+, (3.9)

L I (y) = L(y) + K I , (3.10)

L S(y) =
⋂

I∈S

L I (y). (3.11)

Proposition 3.7 Let L be an input correspondence satisfying L1–L3. For all y ∈ R
n+,

we have the following properties:

(a) If L(y) is S-congested, then there is J /∈ S, gJ ∈ K J and x ∈ WJ (y) such that
DL S (x, y; gJ ) = 0.

(b) If L(y) satisfies a minimal S-disposal assumption, then for all J ∈ S, there are
gJ ∈ K J and x ∈ WJ (y) such that DL S (x, y; gJ ) = 0.

In the next proposition, the impact of adding convexity to axioms L1–L3 is analyzed.

Proposition 3.8 Let L be an input correspondence satisfying L1-L4. For all y ∈ R
n+,

we have the following properties:

(a) L(y) is S-congested if and only if there exists J /∈ S and there are gJ ∈ K J and
x ∈ L(y) such that p(x, y; gJ ) ⊂ K J .

(b) L(y) satisfies a minimal S-disposal assumption if and only if for all J ∈ S there
are gJ ∈ K J and x ∈ L(y) such that p(x, y; gJ ) ⊂ K J .

(c) L(y) is S-congested if and only if there exists J /∈ S and some x ∈ L(y) such that
DL(x, y; gJ ) < DL S (x, y; gJ ).

(d) The S-disposal assumption is minimal if and only if for all J ∈ S and x ∈ L(y):
DL(x, y; gJ ) < DL S (x, y; gJ ).
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Remark that the properties above hold for the general case of a direction vector gJ

possibly having some negative components. However, from a practical standpoint the
direction gJ should be chosen such that the corresponding directional distance function
value actually measures congestion and guarantees feasible solutions. For this, we
introduce the following appropriate direction vector and corresponding congestion
measure.

Definition 3.2 Let L be an input correspondence. Assume that I ∈ S, where S is
a collection of subsets of [m]. Suppose that I 	= ∅ and let gI ∈ R

m be a vector
such that gI i ≤ 0 if i ∈ I and gI i = 0 otherwise. For a production combination
(x, y) ∈ T , we define the I -congestionmeasure in the direction gI as DCI (x, y; gI ) =
DL I (x, y; gI ).

Note that the congestion measure DCI (x, y; gI ) evaluates eventual congestion in
a component wise way per subset of S. This can be illustrated with the help of Fig.
3 showing the case where the set S = {∅, {1}, {2}, {1, 2}}. This implies that one
can measure {1}-congestion in the horizontal direction, {2}-congestion in the vertical
direction, and {1, 2}-congestion into a proportional direction towards the northeast
upper bound of the input set at the back.

This discussion can be linked again to Proposition 2.5 to illustrate the theory-
dependency of empirical measurements and the need for a sufficiently general model.
Even if the empirical data configurationwould allow togenerate an input set as depicted
in Fig. 3, it is straightforward to ignore the potential severity of the congestion phenom-
enon. For instance, if one tries measuring {1, 2}-congestion and the data corroborate
this hypothesis, then one knows that also some form of {1}- and {2}-congestion
is present. By contrast, if one would start out by measuring {1}-congestion ({2}-
congestion) instead and finding it, then nothing is implied about finding {2}-congestion
({1}-congestion) or {1, 2}-congestion in the data. This explains why congestion may
remain unnoticed: even if congestion is initially present in some dimensions of the
true technology, then it is always possible to ignore measuring congestion in some
of these dimensions until eventually no congestion seems to appear at all. This may
contribute to explaining its neglect in applied production theory.

So far congestion is treated as a particular severe form of technical inefficiency.
This fits into a traditional decomposition of static input-oriented inefficiency whereby
congestion and technical inefficiency are analyzed first, then eventually one evaluates
inefficiencies related to returns to scale, and finally one defines allocative efficiency as
closing the gap between this engineering perspective (combining congestion, technical
and scale inefficiencies) and some ideal economic reference point (e.g, resulting from
cost minimization). Obviously, one could define the order of this static decomposition
otherwise which, e.g., could lead one to combine S-disposal with more specific returns
to scale assumptions.14

14 See, e.g., Färe and Grosskopf (2000) and McDonald (1996) who argue in favor and against the above
mentioned static decomposition respectively. Note that this whole issue is solely based on economic tradi-
tion, not on any empirical evidence indicating what decision-makers find relevant information.
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3.4 Testing for consistency with cost minimization

Suppose we are given some data on input–output vectors (x j , y j ) and input prices p j

for all j ∈ J . Here we ask whether or not there exists a family of input sets L(y) that
can make sense of this observed behavior. It is possible to show that the existence of
negative prices involves congestion in the general sense defined in this contribution.
Following Varian (1984) we say that a family of input sets L(y) c-rationalizes the data
if x j is a solution of the program:

min
x

{
p j .x : x ∈ L(y j )

}
(3.12)

for all j ∈ J . Equivalently, a family of input sets L(y) c-rationalizes the data if for all
j ∈ J and all x ∈ L(y j ):

p j .x j ≤ p j .x . (3.13)

Assume that the output set is one-dimensional (n = 1). The main difference with
Varian’s (1984) WACM is that here prices can be negative. This excludes the strong
disposal (or positive monotonic) property of the input set. Following Varian (1984)
we assume the family of input sets is nested by the following assumption:

∀x ∈ L(y), 0 ≤ v ≤ y implies that x ∈ L(v). (3.14)

In the following, we denote

I j =
{

i ∈ [m] : p j
i < 0

}
. (3.15)

The key idea of the following result is that if an input requirement set L(y) c-
rationalizes the data, then it necessarily satisfies a minimal S-disposal assumption
where

S =
⋃

j∈J

I j . (3.16)

This also means that L(y) is S′-congested for all S′
� S.

Proposition 3.9 The following conditions are equivalent:

(a) There exists a family of nested input sets L(y) that c-rationalizes the data.
(b) If yk ≥ y j , then p j .xk ≥ p j .x j for all j, k ∈ J .
(c) There exists a family of nontrivial closed, convex input sets that c-rationalizes the

data and that satisfies a minimal S-disposal assumption, where S = ⋃
j∈J I j .

An immediate consequence is that negative prices imply congestion of the technol-
ogy. Obviously, if all observed prices are nonnegative, then we have I j = ∅ for j ∈ J
and, because of S = ∅, we retrieve the Varian (1984) WACM result as a special case.

Notice that in principle it is possible to relax the convexity assumption (e.g., as in
Briec et al. 2004). Obviously, the same remarks as the ones mentioned at the end of
Sect. 3.1 apply.
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4 Conclusions

Starting from a limited version of the widespread strong disposal assumption we
define new technologies capable to model more general notions of congestion. The
new S-disposal assumption relaxes standard disposability concepts (i.e., strong and
ray disposability notions) by allowing a limited disposability with respect to a more
general class of orders that generate joint restrictions on subsets of variables. In fact,
the S-disposal assumption can be seen as an attempt to re-interpret the traditional
strong disposal axiom as a “local” (in the sense of limited) instead of a global property
(an issue already raised in Lau 1974). These new technologies lead to the formulation
of a new duality result between the input directional distance function and the cost
function with possibly negative prices. This duality result is considerably weaker than
the results available in the current literature. Furthermore, it turns out that the S-
disposal assumption allows modeling more general forms of congestion as defined
in Färe and Svensson (1980) compared to the ray disposal hypothesis. Indeed, apart
from monotone output limitational congestion that can also be represented by ray
disposable input sets, technologies with S-disposal of inputs can also model output
prohibitive congestion, which cannot be represented by ray disposable input sets.

One main limitation is that we focus on congestion in the input space solely.
Therefore, we concentrate on the input directional distance functions and its dual rela-
tion with the cost function to characterize congestion. Generalizations to congestion
phenomena in the outputs space or to the input and output space are relatively straight-
forward, but are deferred to a later contribution. Note that the use of the directional
distance function allows for an easy extension of our proposals to define congestion
in the output space or in the input–output space. Another limitation is that we ignore
the consequences of relaxing the strong disposal assumption for general equilibrium
theory. Indeed, it is rather well-known that the free disposal assumption cannot be
dropped or relaxed in any way without risking that equilibria may fail to exist in non-
convex (e.g., increasing returns to scale) economies (however, Chavas and Briec 2012
recently show that the use of a similar directional distance function framework in fact
facilitates the analysis).

Straightforward extensions of this contribution are the development of empirical
production models capable to test the different disposability assumptions (strong,
weak, and S-disposal). Given the above generalization of the WACM result in Varian
(1984), especially the definition of nonparametric technologies allowing for nonop-
timizing behavior of a subset of observations should be relatively easy. These new
technology specifications allow testing whether traditional assumptions like strong
and weak disposal of inputs can be maintained against the more general S-disposal
assumption. This testing framework could then extend the battery of tests verifying
various combinations of strong andweak input disposability in both inputs and outputs
in the literature. Furthermore, it could be interesting to empirically assess what differ-
ence the S-disposal axiom makes compared to the weak disposal hypothesis in terms
of the shadow prices for bad outputs when explicitly modeling trade-offs between
good and bad outputs (e.g., along the lines of Coggins and Swinton 1996).
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